Normal surfaces in topologically finite 3–manifolds

نویسنده

  • Stephan Tillmann
چکیده

This paper investigates normal surface theory in topologically finite 3–manifolds with ideal triangulations. Treated are closed and non– compact normal surfaces, the projective solution space and the projective admissible solution space, as well as the leaf spaces of the transversely measured singular codimension–one foliations defined by admissible solutions. AMS Classification 57M25, 57N10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal Cr Structures on Compact 3-manifolds

We study normal CR compact manifolds in dimension 3. For a choice of a CR Reeb vector field, we associate a Sasakian metric on them, and we classify those metrics. As a consequence, the underlying manifolds are topologically finite quotiens of S or of a circle bundle over a Riemann surface of positive genus. In the latter case, we prove that their CR automorphisms group is a finite extension of...

متن کامل

Block meshes: Topologically robust shape modeling with graphs embedded on 3-manifolds

We present a unifying framework to represent all topologically distinct shapes in 3D, from solids to surfaces and curves. This framework can be used to build a universal and modular system for the visualization, design, and construction of shapes, amenable to a broad range of science, engineering, architecture, and design applications. Our unifying framework uses 3-space immersions of higher-di...

متن کامل

Hyperbolic Four-manifolds with One Cusp

We introduce an algorithm which transforms every four-dimensional cubulation into a cusped finite-volume hyperbolic four-manifold. Combinatorially distinct cubulations give rise to topologically distinct manifolds. Using this algorithm we construct the first examples of finite-volume hyperbolic four-manifolds with one cusp. More generally, we show that the number of k-cusped hyperbolic four-man...

متن کامل

Topologically Trivial Legendrian Knots

This paper deals with topologically trivial Legendrian knots in tight and overtwisted contact 3-manifolds. The first parts (Sections 1-3) contain a thorough exposition of the proof of the classification of topologically trivial Legendrian knots (i.e. Legendrian knots bounding embedded 2-disks) in tight contact 3-manifolds (Theorem 1.7), and, in particular, in the standard contact S. These parts...

متن کامل

Minimal Surfaces in Geometric 3-manifolds

In these notes, we study the existence and topology of closed minimal surfaces in 3-manifolds with geometric structures. In some cases, it is convenient to consider wider classes of metrics, as similar results hold for such classes. Also we briefly diverge to consider embedded minimal 3-manifolds in 4-manifolds with positive Ricci curvature, extending an argument of Lawson to this case. In the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007